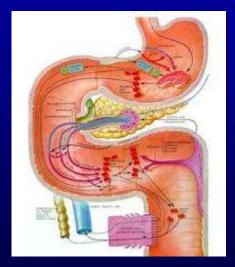


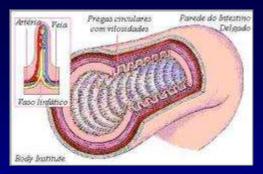
Disciplina de Fisiologia Veterinária

Digestão Geral

Prof. Fabio Otero Ascoli


TÓPICOS QUE SERÃO ABORDADOS DURANTE A AULA

- 1. INTRODUÇÃO
- 2. ESTRUTURA E FUNÇÃO COMPARATIVA
- 3. ANATOMIA (ÓRGÃOS E ACESSÓRIOS, PAREDE GASTROINTESTINAL, MUCOSA E OUTRAS CAMADAS)
- 4. ATIVIDADE ELÉTRICA DO MÚSCULO LISO DO TGI
- 5. CÁLCIO E CONTRAÇÃO MUSCULAR
- CONTROLE NEURAL DO INTESTINO
- 7. REGULAÇÃO ENDÓCRINA do TGI
- 8. CONTROLE PARÁCRINO
- 9. MOVIMENTOS DO TGI
- 10. LABIOS, LINGUA, BOCA E FARINGE E GLÂNDULAS ACESSÓRIAS
- 11. ESÔFAGO E GLÂNDULAS ACESSÓRIAS
- 12. ESTÔMAGO E GLÂNDULAS ACESSÓRIAS
- 13. INTESTINO DELGADO E GLÂNDULAS ACESSÓRIAS
- 14. INTESTINO GROSSO


INTRODUÇÃO

Digestão é o processo de transformação de moléculas de grande tamanho, por hidrólise enzimática, liberando unidades menores que possam ser absorvidas e utilizadas pelas células

Trato Gastrintestinal = ingestão dos alimentos (nutrientes), digestão (= transformações) e absorção

INTRODUÇÃO

Funções do trato gastrointestinal e dos seus órgãos acessórios:

- 1. Movimentação do alimento pelo trato gatrintestinal
- 2. Secreções de soluções digestivas (ex: ácido clorídrico) e digestão de alimentos (= quebra das macromoléculas)
- 3. Absorção de água, diversos eletrólitos e produtos da digestão
- 4. Circulação de sangue através dos órgãos gastrointestinais para transporte das substâncias absorvidas
- 5. Controle destas todas funções pelos sistemas nervoso e hormonal

Qual é imprtância deste tema na medicina veterinária?

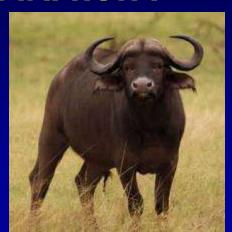
✓ Aparelho digestivo está adaptado ao tipo de alimento, logo precisa ser diferente para processar a digestão e absorção

 ✓ Podemos distinguir animais monogástricos (herbívoros, onívoros e carnívoros) e poligástricos (normalmente se alimentam de vegetais)

✓ Variações extremas encontradas no sistema digestivo dos mamíferos

Principais diferenças:

✓ Carnívoros - maior parte do seu alimento é a ingestão de outros animais, digestão é principalmente enzimática e mínima digestão microbiana


- ✓ Herbívoros domesticado principalmente digestão microbiana
- (1) os ruminantes, como os bovinos, os ovinos e os caprinos (fermentação pré-gástrica)
- (2) (2) aqueles com estômago simples, como os equinos (fermentação pós-gástrica)

Principais diferenças:

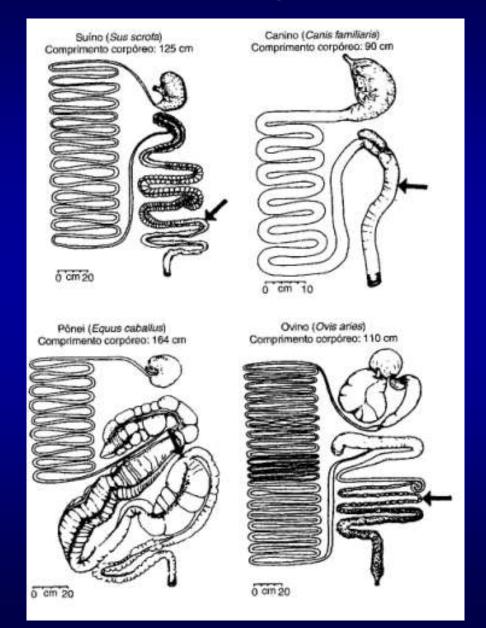
- ✓ Carnívoros
- Estrutura digestiva total é curta e simples
- Consumo de refeições ocasionais de rico teor energético, seguidas por período de escassês

- ✓ Herbívoros domesticado
- Grande órgão de fermentação digestiva
- Consumo de material vegetal (pobre em teor energético)
- Grande tempo gasto para se alimentar

HERBÍVOROS

- ✓ Fermentadores pós-gástrico:
- Alimento é movimentado rapidamente até o intestino grosso
- Digestão enzimática ocorre antes da fermentação

- Alimento demora no pré-estômago
- Fermentação antes da digestão enzimática

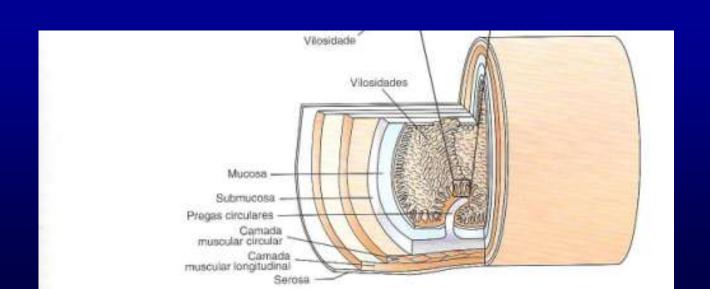


Diferenças básicas entre os carnívoros e os herbívoros:

- ✓ Anatomia
- ✓ Tempo gasto por dia com alimentação
- Atividade das glândulas secretoras e da musculatura lisa
- ✓ Substâncias digeridas, absorvidas e utilizadas

ANATOMIA

Órgãos e Acessórios:

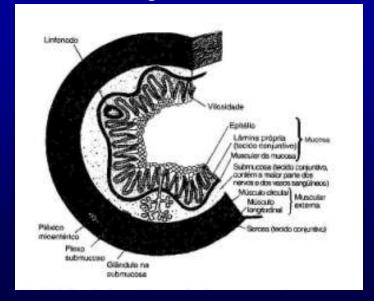

✓ Trato digestório incluem: boca, faringe, esôfago, estômago, intestino delgado, intestino grosso, reto e ânus

✓ Órgãos digestório acessórios são os dentes, a língua, as glândulas salivares, o fígado, vesícula biliar e o pâncreas.

HISTOLOGIA

Parede Gastrointestinal (camadas de fora para dentro):

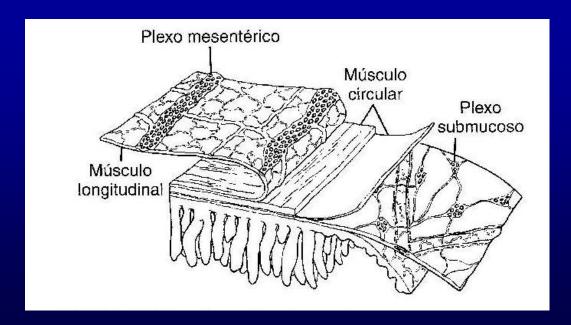
- 1. Serosa
- 2. Camada muscular longitudinal
- 3. Camada muscular circular
- 4. Submucosa
- 5. Mucosa



HISTOLOGIA

Mucosa:

✓ Epitélio - contém células absortivas, caliciformes e endócrinas, bem como células indiferenciadas


✓ Lâmina própria - tecido conjuntivo frouxo, rica em vasos sanguíneos e linfa, fibras musculares lisas (miofibroblastos), fibras nervosas e células imune, incluindo fagócitos, linfócitos e mastócitos

HISTOLOGIA

Plexo mioentérico:

- ✓ Está presente entre a camada muscular circular e camada muscular longitudinal
- ✓ São complexos juncionais que asseguram baixa resistência à movimentação dos íons de uma célula muscular para a seguinte (conectam eletricamente)
- ✓ Integrante do sistema nervoso entérico (SNE)

✓ O potencial elétrico em repouso é – 50 mV

- ✓ Existem duas formas de despolarização:
- Ondas lentas são despolarizações espontâneas, lentas e transitórias do potencial de membrana que podem ser conduzidas por várias distâncias ao longo do trato (ritmo elétrico basal)
- Potenciais em picos ou espículas são despolarizações transitórias mais rápidas que podem ocorrer em ondas agudas e repetitivas

Ondas lentas:

- ✓ Determina o ritmo das contrações
- ✓ Mudanças lentas e ondulatórias no potencial de repouso e suas intensidades variam entre 5 e 15 milivolts
- ✓ Atividade elétrica se origina de células do músculo liso especializado, denominados células intersticial de Cajal (CIC)
- ✓ Potencial de membrana se iniciam na porção proximal do duodeno e são propagadas aboralmente

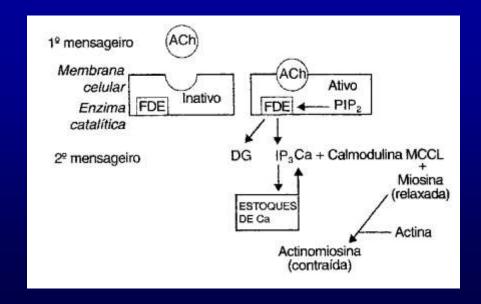
Pontenciais em picos:

✓ Potencial de ação verdadeiro (contração)

- Espiculas

 Despolarização

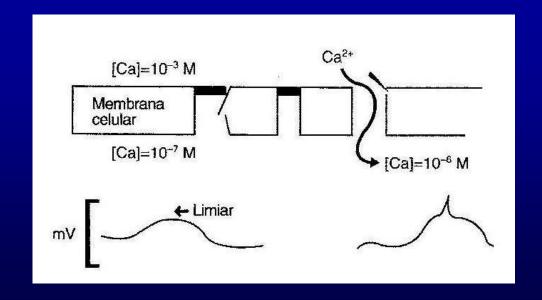
 Ondas
 leritas


 Serimulação por 1, Norepinefrina 2, Simpático 2, Simpático 2, Aceticolina 3, Parassimpéticos

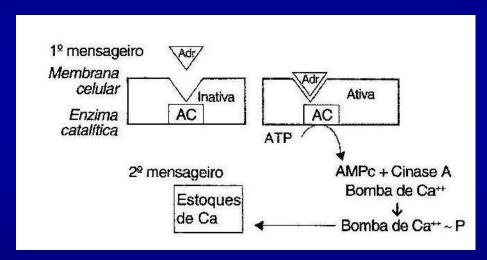
 O 6 12 18 24 30 36 42 48 54 Segundos
- ✓ Ocorrem automaticamente quando o potencial de repouso do músculo liso GI se torna mais positivo do que -40 milivolts
- ✓ Duração 10 a 40 vezes maior que os PA das fibras nervosas
- ✓ Canal para cálcio-sódio movimentação de quantidades de cálcio para o interior da fibra muscular durante PA tem um papel essencial na contração das fibras musculares intestinais

Cálcio e Contração muscular

O aumento do cálcio citossólico intracelular é necessário para que ocorra contração muscular e isto acontece de duas formas:

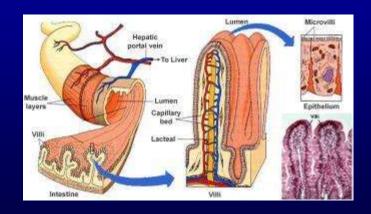

 Ativação de uma fosfodiesterase pela ocupação de receptores muscarínicos

Cálcio e Contração muscular


O aumento do cálcio citossólico intracelular é necessário para que ocorra contração muscular e isto acontece de duas formas:

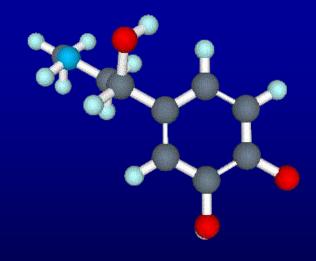
2. Abertura dos canais de cálcio dependentes de voltagem da membrana plasmática do músculo liso

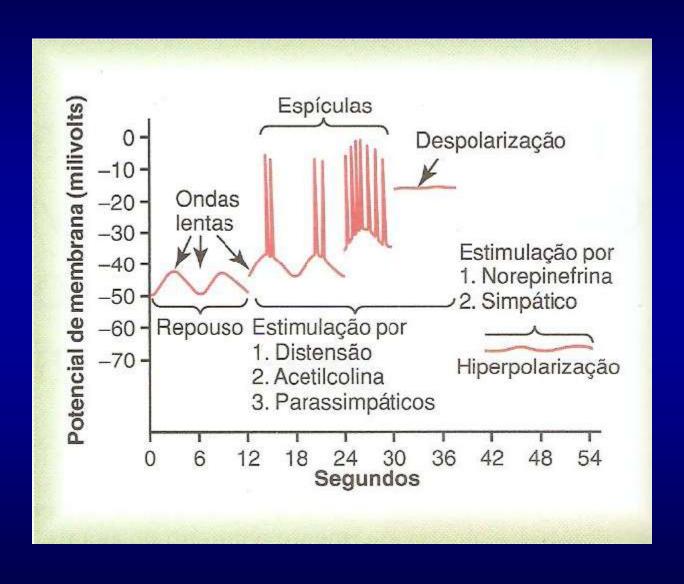
Cálcio e Contração muscular


 ☑ O cálcio intracelular pode ser reduzido e ocorre o relaxamento muscular pelo receptor adrenérgico acoplado a bomba de cálcio

☑ Hiperpolarização da membrana plasmática do músculo liso reduz a concentração do cálcio citossólico – induzido pelo peptídeo intestinal vasoativo (PIV)

Fatores que despolarizam a membrana:


- 1. Estiramento do músculo
- 2. Estimulação da acetilcolina
- 3. Estimulação dos nervos parassimpáticos
- 4. Estimulação por diversos hormônios GI



Fatores que promovem a hiperpolarização:

- 1. Estimulação da epinefrina e da norepinefrina (NE)
- 2. Estimulação dos nervos simpáticos (liberação de NE nos seus terminais)

CONTROLE DO TGI

 Neural – Sistema Nervoso Autônomo (SNA) e Sistema Nervoso Entérico (SNE)

2. Endócrino

3. Parácrino

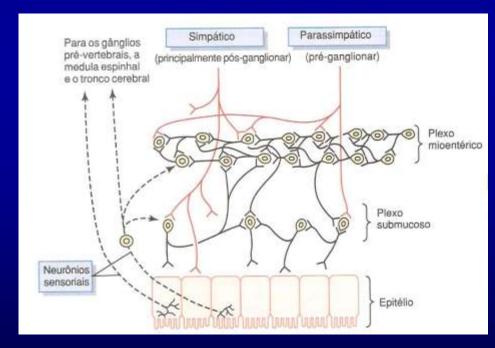
CONTROLE NEURAL DO TGI

☑ Mediado pelas divisões simpática e parassimpática do Sistema
Nervoso Autônomo (SNA) e o sistema nervoso entérico (SNE)

☑ O SNE é composto basicamente de dois plexos: plexo mioentérico ou plexo de Auerbach e plexo submucoso ou plexo de Meissner

☑ Plexo mioentérico controla basicamente os movimentos GI, e o plexo submucoso controla basicamente a secreção gastrointestinal e o fluxo sanguíneo local

CONTROLE NEURAL DO TGI


☑ Fibras extrínsecas simpáticas e parassimpáticas se conectam tanto ao plexo mioentérico quanto ao submucoso

☑ Embora o SNE possa funcionar independentemente desses nervos extrínsecos, a estimulação pelos sistemas parassimpático e simpático pode intensificar muito ou inibir as funções do TGI

CONTROLE NEURAL DO TGI

☑ As terminações nervosas sensoriais se originam no epitélio GI ou na parede intestinal e enviam fibras aferentes aos:

- 1. Dois plexos do SNE
- 2. Gânglios pré-vertebrais do SNS
- 3. Medula Espinhal
- 4. Tronco cerebral (nervo vago)

SNE

☑ Contêm neurônios sensoriais (aferentes), interneurônios, e neurônios motores (eferentes)

☑ Entrada sensorial origina-se de mecanorreceptores nas camadas musculares (distensão) e quimiorreceptores na mucosa (condições química)

☑ Os nervos motores entéricos inervam o músculo vascular, músculo intestinal e as glândulas dentro da parede intestinal

☑ Os axônios dos nervos entéricos contêm vesículas sinápticas que possuem substâncias reguladoras conhecidas coletivamente como neurócrinas

Diferença entre os plexos mioentérico e submucoso

Plexo Mioentérico

- Cadeia linear de muitos neurônios interconectados localizado em todo
 TGI
- 2. Localiza entre as camadas longitudinal e circular do músculo liso intestinal
- 3. Envolvido principalmente na atividade muscular
- 4. Principais efeitos:
- ✓ Aumento da contração tônica (†tônus GI)
- ✓ Aumento na intensidade das contrações ritmicas
- ✓ Ligeiro aumento no ritmo da contração
- ✓ Aumento da velocidade de condução da onda excitatória ao longo da parede intestinal (aumento das ondas peristálticas)

Diferença entre os plexos mioentérico e submucoso

Plexo submucoso

1. Basicamente envolvido com a função de controle na parede interna de cada segmento do intestino

2. Sinais sensoriais originam-se do epitélio GI e são integrados no plexo submucoso para ajudar a controlar a secreção e absorção intestinal local, e a contração local do músculo submucoso

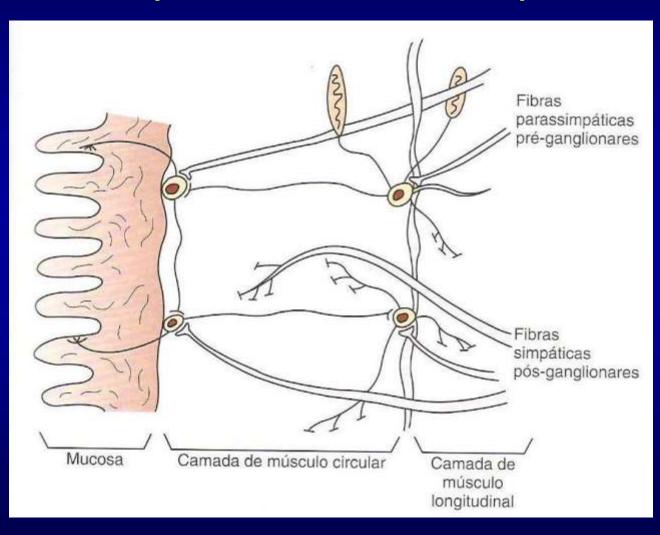
SISTEMA SIMPÁTICO E PARASSIMPÁTICO

☑ Formam a ligação entre o sistema nervoso central (SNC) e o SNE

☑ Maior parte do TGI recebe inervação parassimpática por meio do nervo vago, exceto a porção terminal do cólon

☑ Estimulação parassimpática promove aumento geral da atividade do SNE

SISTEMA SIMPÁTICO E PARASSIMPÁTICO


☑ Maior parte dos corpos dos neurônios simpáticos pós-ganglionares localiza-se nos gânglios celíaco e mesentéricos

☑ As fibras pós-ganglionares distribuem-se pelos nervos simpáticos pósganglionares a todas partes do TGI

☑ Os nervos simpáticos secretam principalmente norepinefrina, mas também pequenas quantidades de epinefrina

☑ Estimulação do SNS inibe a atividade GI, causando efeitos contrários aos do SNP

SISTEMA SIMPÁTICO E PARASSIMPÁTICO (conexão com o SNE)

REGULAÇÃO ENDÓCRINA do TGI

- ✓ O trato gastrintestinal é o maior órgão endócrino do organismo
- ✓ Células enteroendócrinas estão presentes por todo tecido gástrico, intestinal e pancreático
- ✓ Agem duas formas, ser liberado no sangue e exerce sua ação em um órgão distante ou ser liberado para agir localmente (ação parácrina)
- ✓ Vários hormônios agem como hormônio circulantes, como a gastrina, a colecistoquinina (CCC), a secretina, a motilina, o enteroglucagon e o peptídeo YY (PYY)
- ✓ As células que secretam gastrina, CCC e secretina estão localizados no estômago e no intestino proximal
- ✓ O enteroglucagon e o PYY estão localizados no intestino delgado distal e estes são responsáveis pelo retardo do esvaziamento gástrico e o trânsito pelo intestino delgado

CÉLULA ENDÓCRINA GASTROINTESTINAL

PRINCIPAIS HORMÔNIOS E PEPTÍDEOS REGULADORES

Hormônio	Produção	Ação	Estímulo p/ liberação
Gastrina	Estômago distal	Secreção de ác clorídrico Motilidade	Ptn, pH alto, estímulo vagal
Secretina	Duodeno	Secreção de bicarbonato pelo pâncreas e biliar	Ácido no duodeno
Colecistocinina	Duodeno ao íleo	Secreção do pâncreas e reduz o esvaziamento gástrico	Ptn e gordura no intestino delgado
Peptídeo inibitório gástrico	Duodeno e Jejuno proximal	Inibe a motilidade e a atividade secretora gástrica. Secreção de insulina	Carboidrato e gordura no intestino
Motilina	Duodeno e Jejuno	Regula padrão de motilidade do trato gastrintestinal entre as refeições. Tônus do esfíncter esofágico inferior	Acetilcolina

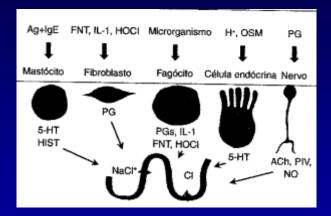
LOCALIZAÇÃO E MODO DE AÇÃO DOS HORMÔNIOS GI

Quadro 23.1. Localização dos hormônios gastrintestinais e o seu modo primário de ação

Produto	Estômago		Intestino		Cálon		
	0	Α	S	1		Ação	Estimulo para liberação
Gastrina	-	+	+	-	-	Est. da secreção gástrica Est. do crescimento da mucosa	Peptideos, AA
Colecistocinina	-	-	+	±	-	Est. das enzimas pancreáticas Est. da contração da vesícula biliar	AG, AA
Secretina	-	-	+	±	-	Est. do HCO ₅ pancreático	H*
Enteroglucágon	. [7]	-	±	+	-	Est. da liberação da insulina Est. da absorção da glicose In. da motilidade gástrica	Glicose, AG
Motilina	-	-	+	±	-	Est. do CMM do antro, do duodeno	
5-HT	+	+	+	+	+	Est. da atividade neural	Hiperosmolalidade, ácido
Somatostatina	+	+	+	±	±	In. da liberação do peptideo	Gordura, AA, H*
Peptideo YY	-	-	-	+	-	In. da motilidade gástrica Est. da absorção do NaCl	Gordura

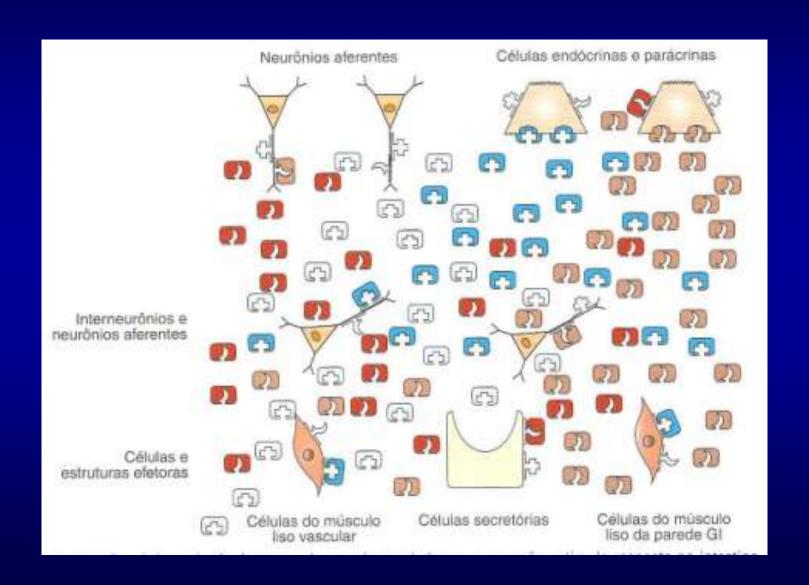
^{+,} presente; -, ausente; ±, pouco; O, oxíntico; A, antro; S, superior; I, inferior; Est., estimulo; In., inibição; CMM, complexo mioelétrico migratório; AA, aminoácidos; AG, ácidos graxos.

CONTROLE PARÁCRINO


✓ Além dos hormônios, mediadores solúveis liberados pelas células mesenquimais e imunes, possuem ação reguladora local sobre as funções motoras, secretoras e protetora

✓ Apesar de grande quantidades destas substâncias serem liberadas durante inflamação, as células presentes na lâmina própria são capazes de secretar quantidades basais destas substâncias para desempenhar funções fisiológicas (proteção)

CONTROLE PARÁCRINO


Exemplos destas substâncias:

✓ Prostaglandina – liberada por fibroblastos

- √ Óxido nítrico (NO) liberado pelas células endoteliais e possuem papel na proteção e manutenção da barreira e do fluxo sanguíneo epitelial da mucosa
- ✓ Citocinas (ex: quimiocinas, interleucina e interferon) liberado pelos fagócitos, mastócitos e linfócitos
- ✓ Outros mediadores histamina e serotonina liberados pelos mastócitos, e peróxido de hidrogênio e ácido hipocloroso liberado pelos fagócitos

ESQUEMA GERAL DA REGULÇÃO GI

MOVIMENTOS DO TGI

A parede do TGI e muscular em toda extensão e e capaz de movimento

O movimento dos músculos GI possuem diversas funções:

- Propulsionar o alimento de um segmento para o próximo.
- ✓ Reter a ingesta em um determinado segmento para a digestão, absorção e armazenamento
- Quebrar fisicamente o material alimentar e mistura-lo com as secreções digestivas

Tempo zero

5 segundos depois

✓ Circular a ingesta para que todas as porções entrem em contato as superfícies absortivas

Contração peristáltica.

Contração peristáltica.

Contração peristáltica.

Contração peristáltica.

Contração peristáltica.

Contração peristáltica.

MOVIMENTOS DO TGI

MOVIMENTOS PROPULSIVOS – PERISTALSE

- ✓ O movimento propulsivo básico do TGI é a peristalse
- ✓ Um anel contrátil ao redor do intestino surge em um ponto e move-se adiante
- ✓ A peristalse ocorre em outro tubos de músculo liso, como nos ductos biliares, nos ductos glandulares, nos ureteres etc
- ✓ O estímulo usual da peristalse intestinal é a distensão do TGI (estimula o SNE)
- ✓ Outros estímulos que podem desencadear a peristalse são a irritação química ou física do revestimento epitelial do intestino. Além disso, sinais nervosos parassimpáticos intensos promovem a peristalse

MOVIMENTOS DO TGI

MOVIMENTOS DE MISTURA

✓ Diferem nas várias partes do TGI

✓ Em algumas áreas, as próprias contrações peristálticas causam a maior parte da mistura

✓ São contrações constritivas intermitentes locais (duração de 5 a 30 seg), que ocorrem em regiões separadas por pouco centímetros da parede intestinal ("triturando" e "separando" os conteúdos)

☑ Para iniciar a digestão, o alimento precisa ser direcionado para o TGI

☑ Os animais quadrúpedes precisam inicialmente apreendê-lo com lábios, dentes ou língua, o que envolve atividade altamente coordenada de pequenos músculos esqueléticos voluntários

☑ músculos da face, lábios e língua estão entre os músculos voluntários controlados mais delicadamente

☑ O método de preensão do alimento varia muito entre as diferentes espécies.

Principais diferenças na preensão dos alimentos:

☑ Caninos e felinos frequentemente utilizam os membros anteriores para segurar o alimento, mas é transferido para a boca pela cabeça e mandíbula

☑ Os cavalos usam bastante os seus lábios, que são móveis e sensíveis, e quando direcionados para trás permitem que os dentes incisivos cortem a

gramínea em sua base

Principais diferenças na preensão dos alimentos:

☑ Os bovinos usam suas línguas para apreender o alimento, e esta é longa, rugosa e móvel, o que facilita circundar as forragens e coloca-las entre os dentes incisivos e o coxim dentário para cortar pelo movimento da cabeça

Principais diferenças na preensão dos alimentos:

- **☑** Os ovinos seus dentes incisivos e a língua suas principais estruturas preênseis
- ☑ Nos suínos, o alimento é levado a boca principalmente pela ação do lábio inferior
- ☑ Os nervos responsáveis pelo controle dos músculos de preensão são o facial, o glossofaríngeo e o ramo motor do trigêmeo
- ☑ Os problemas de preensão podem ocorrer devido a anormalidades nos dentes, mandíbulas, músculos da língua e face, nervos cranianos ou SNC

DENTES

✓ Dentes incisivos são utilizados para procurar alimento pela ação de lacerar ou friccionar

✓ Dentes molares são utilizados para triturar o alimento em partículas pequenas

✓ Nos carnívoros, a trituração molar do alimento é realizada de forma imperfeita, enquanto nos herbívoros é mais eficiente devido a grande quantidade de tempo despendida na mastigação

MASTIGAÇÃO

Principais objetivos:

✓ Quebrar o alimento para fornecer maior área superficial para os sucos digestivos

✓ Misturar o alimento com a saliva para assegurar a lubrificação adequada do bolo alimentar para a passagem pelo esôfago

MASTIGAÇÃO

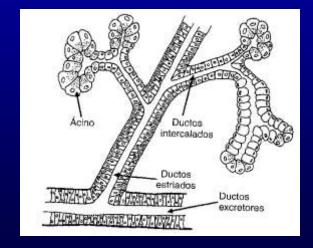
Principais diferenças entre os animais:

- √ Nos carnívoros e nos onívoros, os movimentos da mandíbula são principalmente no plano vertical e produzem ação de cisalhamento
- ✓ Nos herbívoros existe considerável movimento lateral da mandíbula

SECREÇÕES DO TRATO GASTROINTESTINAL

- ✓ A síntese e a secreção dos fluidos digestivos são um processo bem controlado, regulado por eventos endócrinos, parácrinos e neuronais
- ✓ O volume total das secreções é grande quantidade maior que a ingestão do volume
- ✓ Maioria das secreções possui concentração grande de eletrólitos.
- ✓ Reabsorção importante para manter a homeostase de liquido e eletrólitos
- ✓ Consideração Clinica: principal problema de doenças digestivas é a perda de água e eletrólitos do organismo

GLÂNDULAS SALIVARES


- ✓ Parótidas, submaxilares ou mandibulares e sublinguais (pareadas)
- ✓ Saliva é a secreção mista de todas
- ✓ Função primária facilitar a mastigação e a deglutição (importante nos herbívoros)
- ✓ Outras funções: função antibacteriana (lisozimas), digestivas e resfriamento evaporativo (felino e canino)
- ✓ Ruminante Saliva rica em HCO3 e PO4
- ✓ Onívoros (rato, suíno e humano) = saliva tem amilase salivar– quebra amido em pH neutro – ação so na boca
- ✓ Lípase lingual encontradas em animais jovens, como bezerros amamentando, em adultos desaparece

GLÂNDULAS SALIVARES

- ✓ Provavelmente as enzimas salivares têm seu maior efeito digestivo no estômago proximal, pois o alimento não fica retido na boca tempo suficiente
- ✓ Glândula acinar típica
- ✓ Saliva é secretada no lúmen do ácino
- ✓ Secretam água, eletrólitos, enzimas e muco

✓ A composição da saliva é modificada conforme passa pelos ductos

coletores

DEGLUTIÇÃO

- ✓ Envolve estágios voluntário e involuntário e ocorre após o alimento ser mastigado
- ✓ Fase voluntária, o alimento é moldado em um bolo pela língua e então empurrado pela faringe
- ✓ Terminações nervosas sensoriais detectam sua presença e inicia-se a porção involuntária do reflexo de deglutição
- ✓ As ações involuntárias do reflexo de deglutição ocorrem na faringe e no esôfago
- ✓ Centro da deglutição é formado por um conjunto de células nervosas localizadas no assoalho do quarto ventrículo cerebral
- ✓ A deglutição isola a nasofaringe e a traquéia da cavidade bucal por movimento da epiglote, e evita a entrada do alimento nestas áreas

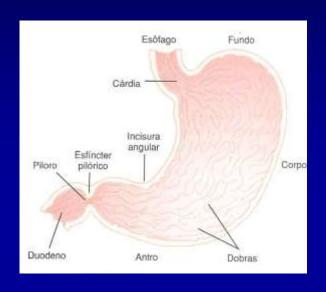
ESÔFAGO

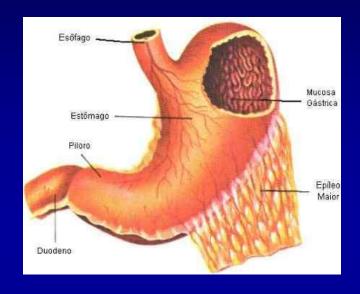
- ✓ Estende-se desde a faringe até o estômago, cruzando o tórax e perfurando o diafragma
- ✓ Contém uma camada muscular longitudinal externa e uma camada muscular circular interna
- ✓ Na maioria dos animais domésticos, toda extensão da musculatura esofágica é estriada (neurônios motores somáticos do nervo vago)
- ✓ Em eqüídeos, primatas e gatos, a porção do esôfago distal é composta de músculo liso (SNE)
- ✓ Constituído por um esfíncter superior, corpo e esfíncter inferior (atividade motora)
- ✓ A passagem do alimento ocorre devido ao peristaltismo

SECREÇÃO ESOFÁGICA

✓ Inteiramente mucosas e fornecem principalmente lubrificação para a deglutição

✓ Corpo principal é revestido com muitas glândulas mucosas simples


✓ Próximo ao estômago e uma pequena extensão da porção inicial do esôfago há muitas glândulas mucosas compostas (produz muco)


O estômago pode ser dividido em três zonas:

 ✓ Porção dorsal ou fundo – está envolvido com a recepção, estocagem do conteúdo, e adptação do volume

✓ Corpo – funciona como reservatório para misturar a saliva e suco gástrico ao alimento

✓ Antro – é a bomba gástrica que regula a propulsão do alimento que passa pelo piloro e vai para o duodeno. Também pode promover a mistura da ingesta e o retardo de partículas sólidas

✓ Na maior parte do tempo, as contrações rítmicas do estômago são fracas e servem para misturar o alimento e as secreções gástricas

 ✓ O marca-passo origina-se na curvatura maior e dissemina circunferencial e distalmente, movimentando-se como um anel

✓ As contrações peristálticas da parte distal do estômago misturam o suco gástrico, trituram os sólidos gástricos e efetuam a propulsão do conteúdo pelo antro até o piloro

✓ Depois que o alimento é bem misturado com as secreções estomacais, a mistura que passa para o intestino é chamado quimo

✓ Velocidade com que o conteúdo fluido deixa o estômago é regulada por receptores duodenais que respondem a composição química da refeição

 ✓ A freqüência máxima de contrações gástrica é estabelecida pela onda lenta, e varia entre as espécies (Ex: cão e cavalo – 4 a 5 por minuto)

✓ A resposta mecânica à onda lenta é governada por influenciais neurais e hormonais

Fatores Gástricos que promovem o esvaziamento estomacal:

✓ Controlado apenas em grau moderado por fatores como o grau de enchimento e o efeito excitatório da gastrina

✓ O principal controle inibitório do esvaziamento gástrico é mediado por um reflexo enterogástrico (mecanismo neural) e uma enterogastrona (mecanismo endócrino), os quais consistem primariamente em reflexos simpáticos e hormônio colecistocinina (CCK)

Mecanismos inibitórios:

- 1. Quimo em excesso no intestino delgado
- 2. Quimo excessivamente ácido, com muita proteína ou gordura não processada, hipotônico ou hipertônico ou Irritativo

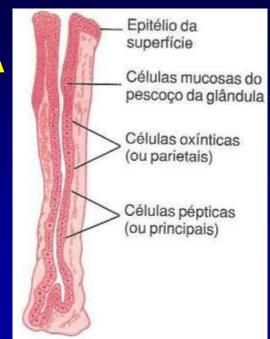
- ✓ As substâncias mais importantes secretadas são íon H, pepsinogênio, muco, HCO3, fator intrínseco e água
- ✓ HCI + pepsina participam da digestão das proteínas
- ✓ Muco lubrifica sólidos
- ✓ Muco e HCO3 = proteção a digestão pepsina acida
- ✓ Mucosa gástrica produz peptídeos (gastrina e somatostatina) que regulam a função gástrica (células G = mucosa do antro)
 - Gastrina = aumenta secreção de HCI e de pepsinogênio, além de estimular a síntese proteica e o crescimento de determinados tecido GI
 - Somatostatina = inibição da gastrina e secreção de HCI

✓ A maioria dos animais domésticos monogástrico possui apenas a mucosa glandular no estômago, mas os cavalos e os ratos apresentam uma área na porção proximal não-glandular

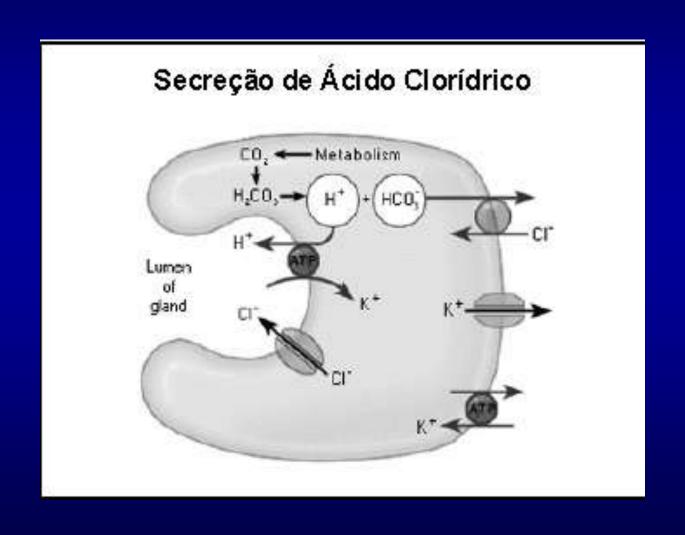
✓ A área glandular do estômago é dividida em três regiões:

mucosa cardíaca – próximo a junção gastroesofágica

mucosa parietal ou gástrica (glândula gástrica) – grande parte do estômago


mucosa pilórica (glândula pilórica) – reveste a porção aboral do estômago

simples


Glândula gástrica:

Composta por três tipos de células:

- 1. Células mucosas do pescoço = secretam muco
- 2. Células pépticas (principais) = secretam grandes quantidades de pepsinogênio
- 3. Células parietais (ou oxínticas) = secretam ácido clorídrico e fator intrínseco

MECANISMO BÁSICO DA SECREÇÃO DE ÁCIDO CLORÍDRICO

MECANISMO BÁSICO DA SECREÇÃO DE ÁCIDO CLORÍDRICO

Tanto os íons de hidrogênio quanto os íons de cloreto são secretados pelas células parietais, mas por mecanismos diferentes

- O íon de H+ é secretado através de uma enzima H+,K+-ATPase localizado na superfície luminal da célula = troca H+ por K+ (gasto de energia)
- 2. K+ volta ao lúmen em combinação com o Cl- (reciclagem de K+)
- 3. Íons de hidrogênio vêm da dissociação do ácido carbônico (H₂CO3), deixando um íon de bicarbonato dentro da célula para cada H⁺ secretado no lúmen
- 4. Bicarbonato acumulado dentro da célula é trocado por ânions de cloreto na superfície não-luminal

MECANISMO BÁSICO DA SECREÇÃO DE ÁCIDO CLORÍDRICO

- ✓ Durante períodos de intensa secreção pelas glândulas gástricas, grande quantidade de bicarbonato é liberada na circulação sanguínea ("maré alcalina" ou alcalose pós-prandial)
- ✓ Normalmente, a maré alcalina é revertida quando o bicarbonato do sangue é consumido indiretamente durante neutralização das secreções gástricas

PEPSINA

✓ Pepsina geralmente é referida como componente único, mas na realidade é uma família de enzimas

✓ Formadas nas células principais como proenzimas inativas denominada pepsinogôenio

✓ Pepsinogênio são estocados nas células principais

√ O ácido clorídrico ativa as enzimas

Glândulas pilóricas

✓ São estruturalmente semelhantes às glândulas gástricas, mas contêm poucas células pépticas e quase nenhuma célula parietal

 ✓ Contêm essencialmente células mucosas que secretam grande quantidade de muco – lubrificação e proteção da parede estomacal

✓ Também liberam gastrina

Fases:

✓ Fase Cefálica – córtex cerebral e centros do apetite da amígdala e do hipotálamo

✓ Fase Gástrica – excita os reflexos vagais, reflexos entéricos locais e mecanismo da gastrina (ACh, gastrina e histamina)

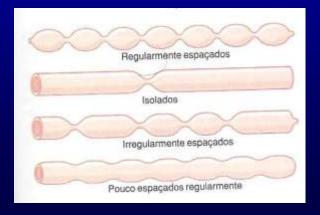
✓ Fase Intestinal – presença de alimento no duodeno, causa secreção de pequenas quantidades de suco gástrico

VÔMITO

Possui funções tanto digestiva como de absorção

O fluxo do conteúdo é regulado para fornecer:

- 1. Mistura do conteúdo luminal com enzimas pancreáticas e bile
- 2. Digestão luminal dos carboidratos, proteínas e gorduras
- 3. Máxima exposição dos nutrientes digestivos à mucosa do intestino delgado


✓ Controle básico para a motilidade é a onda lenta

✓ O marca-passo primário está localizado no duodeno, próximo a entrada do ducto biliar

✓ As ondas-lentas são geradas na velocidade de 17 a 18 por minuto no canino e no felino e 14 a 15 por minuto no equino

Movimentos:

- ✓ Podem ser divididos em contrações de mistura (segmentação) e contrações propulsivas
- ✓ A peristalse induz a propulsão em massa, sendo devida às contrações sequencialmente sincronizadas dos músculos longitudinais e circulares
- ✓ A segmentação é o resultado das contrações intermitentes do músculo circular ocorrendo em diferentes pontos no segmento

A motilidade do intestino delgado ocorre em duas fases distintas:

(1) Durante o período digestivo após a ingestão de alimento - o padrão da motilidade que domina é o de segmentação

(2) Durante o período interdigestivo quando há pouco alimento no TGI - um mecanismo especial inicia o esvaziamento do estômago e aumenta a taxa de motilidade propulsiva, empurrando o conteúdo gástrico e intestinal para dentro do ceco

População bacteriana:

✓ O duodeno alberga uma população bacteriana relativamente pequena

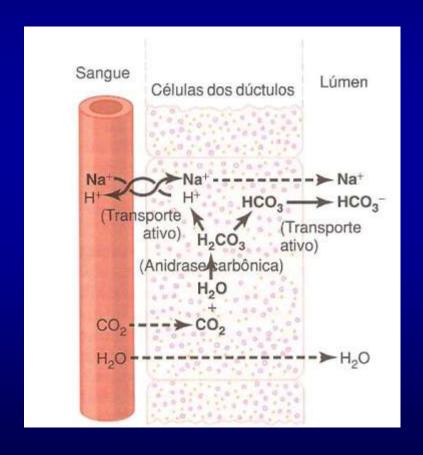
✓ A população aumenta distalmente no íleo, o que possui um número moderadamente grande de organismos bacterianos

✓ O cólon é intensamente colonizado por numerosas espécies de bactérias

✓ É importante para a função intestinal que essa relativa distribuição de bactérias seja mantida dentro do intestino

Controle dos padrões motores:

✓ Além dos sinais nervosos que podem estimular a peristalse do intestino delgado, diversos hormônios afetam a peristalse, incluindo gastrina, CCK, insulina, motilina e serotonina.


✓ A secretina e o glucagon inibem a motilidade do IE

Pâncreas é localizado sob o estômago e é composto de dois tipos separados de tecido glandular:

- Porção pequena (ilhotas dentro do parênquima da glandula) =
 pâncreas endócrino secretam hormônios no sangue
- 2. Maior parte secreções digestivas = pâncreas exócrino secreção no lúmen intestinal

- ✓ Secretado em resposta à presença de quimo nas porções superiores do intestino delgado
- Múltiplas enzimas para digerir os três principais grupos de alimentos: proteínas, carboidratos e gorduras
- ✓ Grande quantidade de bicarbonato
- ✓ Principais enzimas:
 - Tripsina (proteína) zimogênio
 - Amilase (carboidrato)
 - Lipase (gordura)

Secreção de íons de bicarbonato

Três estímulos básicos são importantes na secreção pancreática:

- Acetilcolina Enzimas digestivas
 Colecistoquinina
- 3. Secretina bicarbonato de sódio

Fases de secreção:

- 1. Fase Cefálica (cérebro nervo vago ACh)
- 2. Fase Gástrica (estimulação nervosa)
- 3. Fase Intestinal (secretina)

SECREÇÃO DE BILE

 ✓ Uma das muitas funções do fígado (Bile – secretada pelos hepatócitos – canalículos – ductos biliares)

✓ Papel importante na digestão de gordura

✓ Substâncias mais abundantes são os sais biliares — ajudam emulsificar a gordura nos alimentos em partículas pequenas (lipase) e absorção seus produtos finais

✓ Bilirrubina, colesterol lecitina e eletrólitos também em grandes concentrações (excreção)

SECREÇÃO DE BILE

✓ Esfíncter de Oddi (fechado quando não há alimento no intestino)

✓ Alimento com gordura – secreção de CCK – relaxamento do esfincter – contração – digestão e absorção das gorduras – ács biliares via veia porta – fígado – quase completamente absorvidos (circulação êntero-hepática)

✓ Quando as gorduras acabam = reduz a secreção de CCK – fechamento do esfíncter de Oddi – desvio para vesícula biliar – redução do estímulo

Esfincter Ileocecal

✓ Está na junção do ID e IG e evita o movimento retrógrado dos conteúdos do cólon para o íleo

✓ Consiste em um anel bem desenvolvido de músculo circular que permanece constrito a maior parte do tempo

✓ Em muitas espécies, além do esfíncter, há uma dobra de mucosa que atua como uma válvula de via única

✓ Durante períodos de atividade peristálticas no íleo, o esfíncter relaxa, permitindo o movimento do material para dentro do cólon

Cólon

- ✓ Possui múltiplas funções:
 - 1. Absorção de água e eletrólitos
 - 2. Armazenamento de fezes
 - 3. Fermentação de matéria orgânica que não foi digerida e absorvida no IE
- ✓ Existe imensas diferenças no tamanho e forma do cólon, entre as espécies animais
- ✓ A atividade de mistura é proeminente nos cólons de todas espécies
- ✓ Em muitas espécies, como o cavalo e o suíno, a segmentação colônica é pronunciada e em algumas áreas formam saculações (haustras)

Cólon

 ✓ Uma característica particular da motilidade colônica é a retropulsão ou antiperistaltismo

✓ Contrações antiperistálticas Impedem o movimento propulsivo da ingesta, causando intensa atividade de mistura e forçando o material se acumular nas porções proximais do cólon

 Existem períodos de intensa atividade propulsora que envolve todo o cólon (movimentos de massa)

Esfincter Anal

✓ A abertura anal é constrita por dois esfíncteres: um esfincter interno de músculo liso e um esfíncter externo de músculo estriado esquelético

 ✓ O esfincter anal interno geralmente permanece tonicamente contraído e é responsável pela continência anal (inervação parassimpática)

✓ Esfíncter externo mantém algum grau de contração tônica, mas o tônus consistente do ânus é regulado principalmente por fibras somáticas eferentes

